"Natural norm" a posteriori error estimators for reduced basis approximations
نویسندگان
چکیده
We present a technique for the rapid and reliable prediction of linear-functional outputs of coercive and non-coercive linear elliptic partial differential equations with affine parameter dependence. The essential components are: (i) rapidly convergent global reduced basis approximations – (Galerkin) projection onto a space WN spanned by solutions of the governing partial differential equation at N judiciously selected points in parameter space; (ii) a posteriori error estimation – relaxations of the error-residual equation that provide inexpensive yet sharp bounds for the error in the outputs of interest; and (iii) offline/online computational procedures – methods which decouple the generation and projection stages of the approximation process. The operation count for the online stage – in which, given a new parameter value, we calculate the output of interest and associated error bound – depends only on N (typically very small) and the parametric complexity of the problem. In this paper we propose a new ‘‘natural norm’’ formulation for our reduced basis error estimation framework that: (a) greatly simplifies and improves our inf–sup lower bound construction (offline) and evaluation (online) – a critical ingredient of our a posteriori error estimators; and (b) much better controls – significantly sharpens – our output error bounds, in particular (through deflation) for parameter values corresponding to nearly singular solution behavior. We apply the method to two illustrative problems: a coercive Laplacian heat conduction problem – which becomes singular as the heat transfer coefficient tends to zero; and a non-coercive Helmholtz acoustics problem – which becomes singular as we approach resonance. In both cases, we observe very economical and sharp construction of the requisite natural-norm inf–sup lower bound; rapid convergence of the reduced basis approximation; reasonable effectivities (even for near-singular behavior) for our deflated output error estimators; and significant – several order of magnitude – (online) computational savings relative to standard finite element procedures. 2006 Elsevier Inc. All rights reserved.
منابع مشابه
A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems
We derive a posteriori error estimates in the L∞((0, T ];L∞(Ω)) norm for approximations of solutions to linear parabolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic problems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then establish a pos...
متن کاملar X iv : 0 71 1 . 39 28 v 1 [ m at h . N A ] 2 5 N ov 2 00 7 A POSTERIORI ERROR ESTIMATES IN THE MAXIMUM NORM FOR PARABOLIC PROBLEMS ∗
Abstract. We derive a posteriori error estimates in the L∞((0, T ];L∞(Ω)) norm for approximations of solutions to linear parabolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic problems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then estab...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملGuaranteed, Locally Space-Time Efficient, and Polynomial-Degree Robust a Posteriori Error Estimates for High-Order Discretizations of Parabolic Problems
We consider the a posteriori error analysis of approximations of parabolic problems based on arbitrarily high-order conforming Galerkin spatial discretizations and arbitrarily highorder discontinuous Galerkin temporal discretizations. Using equilibrated flux reconstructions, we present a posteriori error estimates for a norm composed of the L2(H1)∩H1(H−1)norm of the error and the temporal jumps...
متن کاملA Posteriori Error Estimates for Mixed Finite Element Galerkin Approximations to Second Order Linear Hyperbolic Equations
In this article, a posteriori error analysis for mixed finite element Galerkin approximations of second order linear hyperbolic equations is discussed. Based on mixed elliptic reconstructions and an integration tool, which is a variation of Baker’s technique introduced earlier by G. Baker (SIAM J. Numer. Anal., 13 (1976), 564-576) in the context of a priori estimates for a second order wave equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 217 شماره
صفحات -
تاریخ انتشار 2006