"Natural norm" a posteriori error estimators for reduced basis approximations

نویسندگان

  • Sugata Sen
  • Karen Veroy
  • D. B. P. Huynh
  • Simone Deparis
  • Ngoc Cuong Nguyen
  • Anthony T. Patera
چکیده

We present a technique for the rapid and reliable prediction of linear-functional outputs of coercive and non-coercive linear elliptic partial differential equations with affine parameter dependence. The essential components are: (i) rapidly convergent global reduced basis approximations – (Galerkin) projection onto a space WN spanned by solutions of the governing partial differential equation at N judiciously selected points in parameter space; (ii) a posteriori error estimation – relaxations of the error-residual equation that provide inexpensive yet sharp bounds for the error in the outputs of interest; and (iii) offline/online computational procedures – methods which decouple the generation and projection stages of the approximation process. The operation count for the online stage – in which, given a new parameter value, we calculate the output of interest and associated error bound – depends only on N (typically very small) and the parametric complexity of the problem. In this paper we propose a new ‘‘natural norm’’ formulation for our reduced basis error estimation framework that: (a) greatly simplifies and improves our inf–sup lower bound construction (offline) and evaluation (online) – a critical ingredient of our a posteriori error estimators; and (b) much better controls – significantly sharpens – our output error bounds, in particular (through deflation) for parameter values corresponding to nearly singular solution behavior. We apply the method to two illustrative problems: a coercive Laplacian heat conduction problem – which becomes singular as the heat transfer coefficient tends to zero; and a non-coercive Helmholtz acoustics problem – which becomes singular as we approach resonance. In both cases, we observe very economical and sharp construction of the requisite natural-norm inf–sup lower bound; rapid convergence of the reduced basis approximation; reasonable effectivities (even for near-singular behavior) for our deflated output error estimators; and significant – several order of magnitude – (online) computational savings relative to standard finite element procedures. 2006 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems

We derive a posteriori error estimates in the L∞((0, T ];L∞(Ω)) norm for approximations of solutions to linear parabolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic problems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then establish a pos...

متن کامل

ar X iv : 0 71 1 . 39 28 v 1 [ m at h . N A ] 2 5 N ov 2 00 7 A POSTERIORI ERROR ESTIMATES IN THE MAXIMUM NORM FOR PARABOLIC PROBLEMS ∗

Abstract. We derive a posteriori error estimates in the L∞((0, T ];L∞(Ω)) norm for approximations of solutions to linear parabolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic problems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then estab...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Guaranteed, Locally Space-Time Efficient, and Polynomial-Degree Robust a Posteriori Error Estimates for High-Order Discretizations of Parabolic Problems

We consider the a posteriori error analysis of approximations of parabolic problems based on arbitrarily high-order conforming Galerkin spatial discretizations and arbitrarily highorder discontinuous Galerkin temporal discretizations. Using equilibrated flux reconstructions, we present a posteriori error estimates for a norm composed of the L2(H1)∩H1(H−1)norm of the error and the temporal jumps...

متن کامل

A Posteriori Error Estimates for Mixed Finite Element Galerkin Approximations to Second Order Linear Hyperbolic Equations

In this article, a posteriori error analysis for mixed finite element Galerkin approximations of second order linear hyperbolic equations is discussed. Based on mixed elliptic reconstructions and an integration tool, which is a variation of Baker’s technique introduced earlier by G. Baker (SIAM J. Numer. Anal., 13 (1976), 564-576) in the context of a priori estimates for a second order wave equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 217  شماره 

صفحات  -

تاریخ انتشار 2006